Metabolites and water
The range of organic molecules that organisms, especially microbes, can metabolize is very wide and occasionally includes foods such as formaldehyde or petroleum that seem unlikely from a human point of view. Pseudomonas bacteria are capable of using almost any organic molecule as a source of carbon and energy, provided only that the molecule is at least slightly soluble in water. Microorganisms cannot metabolize plastics, not because of any fundamental chemical prohibitions but probably because plastics have not been part of the environment of microorganisms for very long. A lack of oxygen is thought of as extremely deleterious to life, but this view is anthropocentric. Many bacteria are facultative anaerobes that can take their oxygen or leave it. Many other bacteria and protists are obligate anaerobes that are actually poisoned by oxygen.
Water, which is crucial for life, is the major molecule in all organisms.
Unless a massive mineral skeleton is present, the dry matter of most organisms is about one-half carbon by weight. This reflects the fact that all organic molecules are composed of carbon bound at least to hydrogen. Metabolism uses a wide variety of other chemical elements. Amino acids are made of nitrogen and sulfur in addition to carbon, hydrogen, and oxygen. Nucleic acids are made of phosphorus in addition to hydrogen, nitrogen, oxygen, and carbon. Sodium, potassium, and calcium are used to maintain electrolyte balance and to signal cells. Silicon is used as a structural material in the diatom shell, the radiolarian and heliozoan spicule, and the chrysophyte exoskeleton. Iron plays a fundamental role in the transport of molecular oxygen as part of the hemoglobin molecule. In some ascidians (sea squirts), however, vanadium replaces iron. Ascidian blood also contains unusually large amounts of niobium, titanium, chromium, manganese, molybdenum, and tungsten. The vanadium and niobium compounds in ascidian blood may be adaptations to low oxygen levels. Some bacteria use selenium, tellurium, or even arsenic as electron acceptors. Others produce the fully saturated gas hydrides of carbon, arsenic, phosphorus, or silicon as a metabolic waste. Still others form compounds of carbon with such halogens as chlorine or iodine. Not only the foregoing elements but also copper, zinc, cobalt, and possibly gallium, boron, and scandium perform particular functions in the enzymatic apparatus of particular cells. These elements, both the uncommon ones and those as common as phosphorus, are much more concentrated in living matter than in the environment where the living matter resides. This concentration suggests that such rare chemicals play unique functional roles that other, more abundant elements cannot serve.